
Eur. Phys. J. D 38, 381–387 (2006)
DOI: 10.1140/epjd/e2006-00010-x THE EUROPEAN

PHYSICAL JOURNAL D

Implementation of a CNOT gate in two cold Rydberg atoms
by the nonholonomic control technique

E. Brion1,a, D. Comparat1, and G. Harel2
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Abstract. We present a demonstrative application of the nonholonomic control method to a real physical
system composed of two cold Cesium atoms. In particular, we show how to implement a CNOT quantum
gate in this system by means of a controlled Stark field.
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1 Introduction

Quantum control is a very topical issue which bears rel-
evance to many different fields of contemporary physics
and chemistry, such as Molecular Dynamics in laser fields
and Quantum Optics [1–6]. A few examples of control of
the quantum state by adiabatic transport [5], by unitary
evolution [6] or by conditional measurements [7,8] have
been already proposed for the particular quantum system
of atoms interacting with quantized electromagnetic field
in a single-mode resonator.

In parallel, a theoretical framework of quantum con-
trol has been built up. Four different types of problems
have been identified in the literature [9,10]: the control of
pure state, the control of density matrix, the control of
observable and, finally, the control of the evolution opera-
tor. Each of these problems can be formulated in the same
way: the goal is to impose on the considered characteris-
tics an arbitrarily chosen value.

To achieve a control objective, one has to perturb the
system, since its natural evolution usually results in a too
restrictive dynamics. The control Hamiltonian ̂H (t) thus
comprises the unperturbed Hamiltonian ̂H0 as well as M

Hamiltonians of the form Cm (t) ̂Pm, which stand for the
interaction Hamiltonians of the system with M classical
fields of controllable amplitudes Cm (t),

̂H (t) = ̂H0 +
∑

Cm (t) ̂Pm.

The functions {Cm (t)} play the role of the control pa-
rameters one has to adjust in order to achieve the desired
control process. Any problem of control can thus be put in
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the following form: for a given physical system, specified
by ̂H0 and { ̂Pm}, find the values of the control parameters
{Cm (t)} which ensure that a specific characteristics of the
system (quantum state, density matrix, observable, evo-
lution operator) will take an arbitrarily prescribed value.

Not all the objectives are always feasible. For exam-
ple, the unitarity of the evolution operator for closed sys-
tems prevents the eigenvalues of the density matrix from
changing through a Hamiltonian process of control. This
kind of constraints is often referred to as kinematical con-
straints [11]. But there also exist dynamical constraints
which stem from the algebraic properties of the Hamilto-
nians { ̂H0, ̂Pm}. Indeed, the evolution operator

̂U (t) = T
{

e−
i
�

∫ t
0

̂H(τ)dτ
}

where T denotes the chronological product, belongs to
the Lie group obtained by the exponentiation of the Lie
algebra generated by the operators {i ̂H0, i ̂Pm}. The feasi-
bility of a particular problem of control in a specific phys-
ical situation, defined by the Hamiltonians { ̂H0, ̂Pm}, is
clearly related to the properties of this algebra. For ex-
ample, if one wants to completely control the evolution
operator of a quantum system, i.e. to be able to give the
operator ̂U any prescribed value, one must perturb the
system in such a way that the operators {i ̂H0, i ̂Pm} gen-
erate the whole Lie algebra u (N) which provides, through
exponentiation, the whole Lie group U (N) [12,13] (this
prescription is called the Bracket Generation Condition).
Necessary mathematical conditions also exist for the other
types of control problems which can be found in the lit-
erature [10]: these conditions are obviously weaker than
the previous one, since the controllability of the evolution
operator automatically implies all the other ones.
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The feasibility of a control problem can thus be decided
through mathematical criteria established in the context
of the Lie group theory. But the explicit values of the
control parameters achieving the desired control objective
still remain to be found. In other words, once the exis-
tence of a solution has been proved, one still has to find
it explicitly. To achieve this goal, different methods, such
as optimal control [2,14,15], have been proposed, most of
which rely either on a known or intuitively guessed partic-
ular solution which can be further optimized with respect
to a given cost functional, through variational schemes [9].
A purely algebraic approach [16], based on the decompo-
sition of the arbitrary desired evolution on the Lie group,
is also possible, but rapidly leads to intractable computa-
tions as the dimension of the state space increases.

In the context of the control of the evolution operator,
a constructive method called nonholonomic control [17,18]
was proposed, in the same spirit as in [19]: this method is
fundamentally algebraic but also uses optimization steps.
The physical idea is to alternately apply two distinct
well chosen perturbations ̂Pa and ̂Pb (i.e. two perturba-
tions which check the Bracket Generation Condition). The
timings of the interaction pulses play the role of control
parameters and are determined by solving the “inverse
Floquet problem”. The convergence of the algorithm re-
sults from an unsuspected simplification which emerges
from the Random Matrix Theory. Indeed, it relies on the
algebraic properties of the Nth roots of the identity ma-
trix, the spectra of which resemble those of random uni-
tary matrices which are ruled by the Dyson distribution
law. This method, combined with a generalization of the
Quantum Zeno effect, has also led to coherence protection
schemes [20–22].

The nonholonomic technique is completely universal
and can thus be applied to any physical system. In the
last few years, cold atomic Rydberg states have appeared
as particularly relevant in the context of quantum infor-
mation, and have been widely investigated both theoreti-
cally [23,24] and experimentally [25,26]. In this paper we
propose to consider a real system composed of two cold
cesium (Cs) atoms interacting via dipolar forces and pre-
pared in Rydberg states. Under some physical assump-
tions, the Hilbert space of the system is restricted to four
states, as for a two qubit system. We then propose a con-
trol experiment employing a pulsed electric field which
allows us to impose a CNOT gate to the system through
nonholonomic control: this constitutes the new result of
this article. Even though we have tried to propose a realis-
tic experimental setting, the simplifications we have made
result in serious limitations of the scheme we present.
Nevertheless, it shows how the nonholonomic method can
work on a real physical system and suggests that this tech-
nique can be an effective way to solve real-life problems of
control.

The paper is organized as follows. In Section 2, we re-
call briefly the main features of the nonholonomic control
technique. In Section 3, we describe our physical applica-
tion in detail — the system, the control Hamiltonians, the
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Fig. 1. Pulsed shape of the control Hamiltonian.

calculated control parameters — and discuss its validity
and limitations.

2 Control of the evolution
through nonholonomic control

Let us consider an N -dimensional quantum system of
unperturbed Hamiltonian ̂H0. Our goal is to control its
evolution operator ̂U , i.e. to be able to achieve any arbi-
trary evolution ̂Uarbitrary ∈ U (N). To this end, we alter-
nately apply two physical perturbations, of Hamiltonians
̂Pa and ̂Pb, during N2 time intervals (pulses), the timings
of which are denoted by {τk ≡ tk − tk−1}k=1,...,N2 (t0 = 0
and tN2 = T correspond to the beginning and the end of
the control sequence, respectively). The control Hamilto-
nian takes the following pulsed shape (cf. Fig. 1):

̂H(t) = ̂H0 + Ca (t) ̂Pa + Cb (t) ̂Pb

with Ca (t) = 1, Cb (t) = 0 and ̂H(t) = ̂H0 + ̂Pa ≡ ̂Ha for
t ∈ [t2k−2, t2k−1] and Ca (t) = 0, Cb (t) = 1, and ̂H(t) =
̂H0 + ̂Pb ≡ ̂Hb for t ∈ [t2k−1, t2k], where k = 1, . . . , N2/2.
The total evolution operator is therefore

̂U ({τ1, . . . , τN2−1, τN2}) =

e−
i
�

̂HbτN2e−
i
�

̂HaτN2−1 . . . e−
i
�

̂Haτ1 ,

where we have implicitly assumed that N is even.
Our control problem can thus be translated into the

following form: given an arbitrary unitary operator

̂Uarbitrary ∈ U(N),

we want to find a time vector

−→τ = (τ1, . . . , τN2)

with non-negative entries, such that

̂U (−→τ ) = ̂Uarbitrary. (1)

As we said previously, for a solution to exist the operators
{i ̂Ha, i ̂Hb} must generate the whole Lie algebra u (N).
This prescription can be checked directly as long as the
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dimension N is not too big: one simply computes the com-
mutators of all orders of i ̂Ha and i ̂Hb and stops as soon
as they generate u (N). But when N becomes large, di-
rect computation is intractable. In that case, one can sim-
ply check the following sufficient conditions, suggested by
Kac to the authors of [17], according to which the system
becomes nonholonomic, that is completely controllable,
when the representative matrix of ̂Hb in the eigenbasis
of ̂Ha has no zero elements and vice versa, and also the
eigenvalues and their pairwise differences are distinct for
both matrices.

Once the previous criterion is checked, one has to com-
pute the time vector −→τ solution of equation (1). The
method consists in determining the time vector −→τ (0) such
that

̂U
(−→τ (0)

)

= ̂I,

then iteratively approaching the time vector −→τ through a
Newton-like technique.

The straightforward way to compute −→τ (0) would be to
minimize the functional

F (−→τ ) = ‖̂U (−→τ ) − ̂I‖2

with respect to −→τ . However, F presents many local min-
ima which make its optimization uneasy. Yet, there exists
an alternative method based on the algebraic properties
of the Nth roots of the identity matrix.

The idea is to look for N parameters {Tk}k=1...N such
that

e−
i
�

̂HbTN e−
i
�

̂HaTN−1 . . . e−
i
�

̂HaT1 = ̂I
1
N , (2)

where ̂I
1
N is a non-degenerate Nth root of the identity

matrix, i.e. a matrix of the form

̂I
1
N = ̂M−1

⎡

⎢

⎢

⎢

⎣

1 0 · · · 0
0 ei 2π

N · · · 0
...

...
. . .

...
0 0 · · · ei(N−1) 2π

N

⎤

⎥

⎥

⎥

⎦

̂M,

where ̂M is a unitary matrix. To compute the Tk’s, we use
the following algebraic property: if P

̂U (λ) ≡
∑N

j=0 ajλ
j

denotes the characteristic polynomial of a unitary matrix
̂U , then

∑N
j=0 |aj|2 ≥ 2 and the equality is achieved if and

only if ̂U is an Nth root of the identity matrix, up to a
global phase factor.

To obtain the Tk’s, one thus computes the character-
istic polynomial

P
̂U (λ) ≡

N
∑

j=0

aj ({Tk}k=1...N )λj

of the matrix product

̂U = e−
i
�

̂HbTN e−
i
�

̂HaTN−1 . . . e−
i
�

̂HaT1 ,

and minimizes the function

FN =
N

∑

j=0

|aj ({Tk}k=1...N )|2

Fig. 2. Spectrum of a random unitary matrix (white circles)
resulting from the repulsion of the eigenvalues on a unit circle
is shown vs. the eigenvectors of Nth root of the identity matrix
(black circles) multiplied by an unimportant phase factor.

to 2 with respect to the Tk’s. This minimization turns to
be quite easy, due to the fact that a generic unitary matrix
is very close to an Nth root of the identity. In fact, numer-
ical work shows that in about 30% cases of randomly cho-
sen timings {Tk} the standard steepest descent algorithm
immediately finds the global minimum FN = 2. This fact
has roots in the Random Matrix Theory [27]. Indeed, ac-
cording to Dyson’s law, the eigenvalues of random unitary
matrices tend to repel each other, and are thus very likely
to be almost regularly distributed on the unit circle, as
those of an Nth root of the identity, as shown in Figure 2.
In other words, in the space of N × N unitary matrices,
the ̂I

1
N matrices are present in abundance, and can be

reached from a randomly chosen point by small variation
of the timings. Let us note that this is true as long as the
interaction Hamiltonians we deal with belong to Gaussian
ensembles (see [27]). If, on the contrary, they were ruled by
Poisson statistics, their eigenvalues would not repel each
other any more, which would threaten the convergence
of our algorithm. However, the Poisson regime describes
non-interacting systems, and is thus not adapted to the
situation we deal with: indeed, the different qubits of a
quantum computer have to interact with each other, so as
to provide entanglement, which is the resource allowing
for computational power.

Finally, we define the time vector −→τ (0) corresponding
to the identity matrix by simple repetition of {Tk}

τ
(0)
i+(j−1)N = Ti for i, j = 1, . . . , N, (3)

and checks that indeed

̂U
(−→τ (0)

)

=
(

e−
i
�

̂HbTN e−
i
�

̂HaTN−1 . . . e−
i
�

̂HaT1

)

. . .
(

e−
i
�

̂HbTN e−
i
�

̂HaTN−1 . . . e−
i
�

̂HaT1

)

=
(

̂I
1
N

)N

= ̂I

up to an irrelevant global phase factor.
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We now have to iteratively determine the time vector−→τ from −→τ (0). Let us first consider the case of a target
evolution close to the identity: in that case, ̂Uarbitrary can
be written in the form

̂Uarbitrary = ̂Uε ≡ exp(−i ̂Hε), (4)

where ̂H is an N × N bounded (|| ̂H|| ≤ 1) dimensionless
Hermitian Hamiltonian, and ε > 0 a small parameter. We
then calculate the variations δτk, which are determined to
first order in ε by the linear equations

N2
∑

k=1

∂ ̂U

∂τk

(−→τ (0)
)

δτk = −i ̂Hε. (5)

Once δ−→τ = (δτ1, . . . , δτN2) has been calculated through
standard techniques of linear algebra, we replace −→τ (0) by−→τ (0) + δ−→τ and repeat the same operation until we ob-
tain −→τ which checks ̂U (−→τ ) = ̂Uarbitrary at the desired
accuracy.

If the evolution ̂Uarbitrary = ̂Uε is not close to the iden-
tity, that is, if ε is not small, one has to divide the work
into elementary paths on which the previous method con-
verges. To this end, we consider an integer n ≥ 2 such that
(̂Uarbitrary)

1
n = ̂U ε

n
is attainable from ̂I through our iter-

ative algorithm, and determine in this way the associated
time vector −→τ ( 1

n) which checks

̂U
(−→τ ( 1

n )
)

= ̂U ε
n
.

Taking (̂Uarbitrary)
1

n−1 = ̂U ε
n−1

as our new target, we re-
peat the same algorithm to compute −→τ ( 1

n−1) such that

̂U
(−→τ ( 1

n−1 )
)

= ̂U ε
n−1

,

and so on. We progress in this way as long as the algo-
rithm converges: in general, it stops at a value n∗ ≥ 1,
for which equation (5) has no solution. Then, we keep the
time vector −→τ ( 1

n∗ ) and simply repeat the same control
sequence n∗ times to achieve the desired evolution

̂U
(−→τ ( 1

n∗ )
)

. . . ̂U
(−→τ ( 1

n∗ )
)

=
(

̂U ε
n∗

)n∗

=
[

(

̂Uarbitrary

) 1
n∗

]n∗

= ̂Uarbitrary.

To conclude this section, let us first point out that another
equivalent form of the nonholonomic control method ex-
ists, in which the durations of the pulses are fixed, whereas
the strengths of the perturbations play the role of control
parameters. The equations in that case are very similar to
those we have just dealt with, and the same method ap-
plies with almost no change. For more details, see [17]. Sec-
ondly, let us emphasize that the number of pulses needed
to control the evolution operator of an N -dimensional
system through the nonholonomic control method scales

Fig. 3. Polar angles θ, ϕ.

as N2. Thus, for a k-qubit gate, the complexity of the
pulse sequence scales as 22k. This shows that while it is
not practical to build a quantum computer using a single
high-dimensional nonholonomic control gate, the method
may allow to construct arbitrary 2- and 3-qubit gates that
would serve as building blocks for such a computer [18].

3 Application: implementation of a CNOT
gate in a two cold Cs atom system

In this section, we present the application of our con-
trol technique to a system of cold Cs atoms. Frozen
Rydberg gases of interacting Cs atoms have been inves-
tigated in [28] and have revealed the existence of new
phenomena typical of low temperatures, such as the mod-
ification of resonance profiles, the explanation of which
requires the framework of a N body theory. The system
we have chosen to consider in this paper is greatly inspired
by the experimental situation studied in [28]: it consists in
two Cs atoms in Rydberg states, denoted by (A) and (B),

of dipole momenta
−̂→
dA and

−̂→
dB, respectively, linked by the

fixed vector
−→
R = R−→n which is determined by its norm,

taken equal to R = 2 × 10−7 m (of the same order as the
distance between two close neighbour atoms in [28]), and
its direction −→n , defined by polar angles θ and ϕ (cf. Fig. 3).
These two atoms are coupled by dipole-dipole interaction

̂Vdd =
1

4πε0R3

[

−̂→
d A · −̂→d B − 3

(

−̂→
d A · −→n

) (

−̂→
d B · −→n

)]

and are subject to a Stark field
−→
E S = ES

−→e z, the z-axis
corresponding to the quantization axis for the total an-
gular momentum. The total Hamiltonian of the system is
thus composed of the unperturbed part, ̂H0 = ̂Vdd, and

the controllable perturbation ̂VS = −−̂→
d · −→E S .

At this stage, we shall make two remarks. Firstly, for
the dipole-dipole approximation of the interaction energy
to hold, i.e. for higher order terms to be actually negligible,
the distance R between atoms must be much greater than
the sum of the radii of the atoms, which is not strictly the
case here: indeed, in the atomic Rydberg states we shall
consider (n = 23, 24), the two atoms have almost the same
radius, approximately equal to 3 × 10−8 m, whence the
prescription R � rA + rB is not rigorously checked. To
circumvent this difficulty, one could be tempted to increase
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the value of the interatomic distance R, but this would re-
sult in a decrease of the typical value of the dipole-dipole
interaction which would then become much smaller than
the typical value of the Stark interaction energy: this has
to be avoided for our purpose of control, and the balance
between the unperturbed Hamiltonian ̂H0 = ̂Vdd and the

perturbation ̂VS = −−̂→
d ·−→E S must be preserved. One might

then suggest to decrease the Stark field in order to make
the Stark interaction term decrease and follow the dipole-
dipole interaction, but then the range of the required val-
ues for the Stark field would not be realistic. We choose
instead to keep the value of R = 2 × 10−7 m and to con-
sider the dipole-dipole term only, bearing in mind that a
more rigorous approach should take higher order effects
into account. Secondly, contrary to the experimental sit-
uation described in [28], we do not deal with a sample of
N interacting Cs atoms but only with a two atom system.
Nevertheless, it has been demonstrated that this situation
could be experimentally achieved [29].

Let us now describe the control operation we want to
achieve. Initially in zero field, the system is prepared in
an arbitrary superposition

∑3
i=0 ci |i〉 of the following four

states

|0〉 =
∣

∣24s1/2, mj = 1/2; 23s1/2, mj = 1/2
〉

|1〉 =
∣

∣23p3/2, mj = 3/2; 23p3/2, mj = 3/2
〉

|2〉 =
∣

∣23p3/2, mj = 3/2; 23p3/2, mj = 1/2
〉

|3〉 =
∣

∣23p3/2, mj = 1/2; 23p3/2, mj = 1/2
〉

which formally stands for two qubits of information to be
processed. Our goal is to impose the CNOT gate, or, in
other words, whichever the initial state

|ϕ (0)〉 = c0 |0〉 + c1 |1〉 + c2 |2〉 + c3 |3〉

is, we want to impose the particular evolution CNOT ,
yielding the final state

CNOT |ϕ (0)〉 = c0 |0〉 + c1 |1〉 + c3 |2〉 + c2 |3〉 .

Let us underline that the choice of this specific gate is
purely arbitrary: we could have chosen any other unitary
evolution of the system. Nevertheless, the CNOT gate is
particularly important since it enters into the composition
of universal sets of quantum gates, as demonstrated by
DiVincenzo in his well-known paper [30].

The control sequence which allows us to achieve this
objective roughly consists in alternately and diabatically
(i.e. abruptly) applying the two different values

Ea = 87.42 V/cm
Eb = 84.85 V/cm

of the Stark field to the system, corresponding to two dif-
ferent values ̂Ha and ̂Hb of the total Hamiltonian, during
pulses the durations of which will be determined through
the algorithm described in the previous section. From now
on, we shall make the two following physical assumptions

Fig. 4. Simplified Stark diagram of the system considered:
with (dashed line) and without Vdd (solid line).

on the system: (i) the states
∣

∣23s1/2, mj = 1/2
〉

∣

∣24s1/2, mj = 1/2
〉

are not mixed with the Stark multiplicities n = 19, 20 (this
assumption is motivated by the position of the avoided
crossings, which are far from the values Ea and Eb of the
applied field); (ii) the states

∣

∣23p3/2, mj = 1/2
〉

∣

∣23p3/2, mj = 3/2
〉

remain unaltered (we neglect their mixing with 22d
states, which is correct up to 10%), while their en-
ergies decrease linearly with the amplitude of the ap-
plied field. According to these simplifications, the spec-
trum of our system in a static electric field can be
represented as shown in Figure 4: the energies of the
states |1〉, |2〉 and |3〉 vary linearly with the applied
field (with the same slope γ = −283.044 atomic units),
while the energy of the state |0〉 remains constant; more-
over, for the resonance fields E1 = 88.8 V/cm =
1.73 × 10−8 a.u., E2 = 84.4 V/cm = 1.64 × 10−8 a.u.,
E3 = 80.5 V/cm = 1.57 × 10−8 a.u., we have E(|1〉) =
E(|0〉), E(|2〉) = E(|0〉) and E(|3〉) = E(|0〉), respectively.
In the basis {|0〉, |1〉, |2〉, |3〉}, the total Hamiltonian takes
thus the following expression

̂H = ̂Vdd +

⎛

⎜

⎝

0 0 0 0
0 γ(E − E1) 0 0
0 0 γ(E − E2) 0
0 0 0 γ(E − E3)

⎞

⎟

⎠
,

which will alternately take the two distinct values ̂Ha for
E = Ea and ̂Hb for E = Eb.

In summary, we deal with a system whose Hilbert
space is restricted to N = 4 states, to which we want to
apply the CNOT gate. To this end, we propose to alter-
nately apply two Hamiltonians ̂Ha and ̂Hb during pulses
whose timings {τk} are to be determined by the method
we presented in the previous section. What we have to do
first is to find the N = 4 timings {Tk=1,...,4} which meet
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Fig. 5. Elementary N2 = 16 pulse control sequence obtained
for R = 2×10−7 m, θ = π/15, and φ = π/6. The total duration
is 6.77 ns and the values of the different interaction times are
ti(ns) = {0.743378, 0.553823, 0.277301, 0.133699, 0.800748,
0.423586, 0.427981, 0.0427037, 0.71635, 0.458626, 0.403841,
0.13241, 0.682599, 0.54579, 0.349389, 0.0809227}.

equation (2) by minimizing
∑4

j=0 |aj ({Tk=1,...,4})|2. Using
equation (3) we then build the N2 = 16-dimensional time
vector −→τ (0) from the Tk’s, which achieves the evolution
̂I. Then we apply the iterative algorithm described in the
previous section. As the CNOT gate is far from the iden-
tity matrix, we have to divide the work: we take CNOT

1
n

as our target evolution, where n is an integer greater than
1 for which our algorithm converges, providing the time
vector −→τ 1

n ; then we take the new target CNOT
1

n′ where
n′ < n and run our algorithm again, yielding the vector
−→τ 1

n′ , etc. as long as we obtain convergence. The smallest
value of n we obtained is n∗ = 8, associated with the time
vector −→τ 1

n∗ which achieves the evolution CNOT
1

n∗ : the
desired evolution CNOT is obtained by repeating n∗ = 8
times the same elementary control sequence, defined by
−→τ 1

n∗ . We thus see that the time vector −→τ CNOT which
achieves CNOT is n∗ × N2 = 8 × 16 = 128-dimensional
and can be built by repeating 8 times the vector −→τ 1

n∗ .
Figure 5 presents the numerical results we obtained for

θ = π/15 and φ = π/6 (cf. Fig. 3) which shows the switch-
ings of the Stark field on an elementary control sequence,
whose duration is 6.77 ns. In our calculations, we tried to
remain in a realistic range for the different parameters of
our system. For example, the total control duration, which
is of the order of 8 × 6.77 ns 	 0.06 µs, is much smaller
than the lifetime of the Rydberg states considered, which
is approximately 10 µs. Yet, serious problems and limita-
tions arise.

Firstly, the required switching time of the Stark field
is much less than 1 ns (some timings are a few 100 ps),
which is experimentally very difficult to achieve: this will
unavoidably threaten the reliability of the control. To ad-
dress this problem, one may consider replacing the static
control fields by pulsed lasers, as in [21], which would prob-
ably allow rapid switching times and would certainly be
more tractable experimentally. Secondly, the four state
system we have considered here is a severe idealization:

the couplings between the states
∣

∣24s1/2, mj = ±1/2; 23s1/2, mj = ±1/2
〉

∣

∣23p3/2, mj = ±3/2; 23p3/2, mj = ±3/2
〉

∣

∣23p3/2, mj = ±3/2; 23p3/2, mj = ±1/2
〉

∣

∣23p3/2, mj = ±1/2; 23p3/2, mj = ±1/2
〉

cannot be ignored. In addition, the influence on the states
23s and 24s of the multiplicities n = 19, 20 has been com-
pletely neglected, as well as the mixing of the states 23p3/2

with the states 22d. One can solve these problems by in-
creasing the state space, i.e. by taking all the states which
are actually coupled by the Stark field and the dipole-
dipole interaction into account: calculating the control
time vector becomes much longer, as the system consid-
ered is larger, but, fundamentally, the structure of the
problem remains the same. Finally, if we do not work with
two atoms but rather with a large sample, it might be ex-
perimentally very difficult to fix precise values to R, θ and
ϕ: this results again in a loss of reliability of the control.
A possible solution to this problem, though not perfect,
would be to put the atoms in an optical lattice, which
would allow one to control more precisely their spatial ar-
rangement. Another method would be to perform a first
control sequence, the goal of which would be to distinguish
between “good” and “bad” pairs of atoms: for instance,
starting from the state |3〉, the “good” pairs (i.e. the pairs
with the required vector

−→
R ) will undergo the CNOT gate

and will thus end in the state |4〉, whereas the other pairs
will end in a superposition of all states and could therefore
be experimentally distinguished and destroyed.

To conclude this section, let us first emphasize that the
limitations discussed above do not remove the pedagogi-
cal and demonstrative value of the application presented.
The example considered here shows the operability of the
nonholonomic control method and suggests that it can be
actually employed to achieve real objectives of control.
Second, we would like to compare our application to the
so-called dipole blockade schemes [23,24]. The nonholo-
nomic control scheme, as presented in Section 2, is very
general: its scope is not restricted to a particular physi-
cal system, and moreover, it allows one to implement any
quantum gate (here we have chosen to achieve the CNOT
gate, but it could have been any other unitary evolution
matrix). In contrast, the proposals described in [23,24]
deal with precisely defined physical setups and provide
ways to achieve a restricted set of gates. The price to
pay for the interesting universality properties the nonholo-
nomic control technique offers is the extra experimental ef-
fort we have to make to find a convenient working regime.
In turn, schemes like those described in [23,24] are less
universal but more “practical” to achieve, as they directly
arise from the physics of the system considered.

4 Conclusion

In this paper, we first recalled the nonholonomic con-
trol technique, which allows one to control the evolution
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operator of generic quantum systems which meet the
bracket generation condition: after putting it in the gen-
eral framework of quantum control we briefly exposed its
main algorithmic features and underlined the fundamental
reasons for its convergence. Then we presented a new re-
sult which is the demonstrative application of this scheme
to a system of two cold Cs atoms, inspired by experimen-
tal studies on cold Rydberg gases: we showed that through
alternately applying two different values of a Stark field
during 128 pulses, the timings of which range from 40 ps
to 800 ps, one can impose the CNOT gate to two qubits
of information stored in four specific states of the system.
Finally we discussed the physical validity and the limita-
tions of our application.

The authors thank V.M. Akulin and P. Pillet (Laboratoire
Aimé Cotton, Orsay, France) for stimulating and fruitful dis-
cussions. The support of EU (QUACS RTN) is kindly acknowl-
edged.
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